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Abstract

A new code, Monte Carlo Collisional Stochastic Orbit Retracing (MCCSOR),  has been devel-

oped to model the alpha particle loss signal as measured by the outer midplane scintillator detector in

TFTR.  The shadowing effects due to the outer limiters and the detector itself have been included,

along with pitch angle scattering and stochastic ripple diffusion.  Shadowing by the outer limiters has

a strong effect on both the magnitude and pitch angle distribution of the calculated loss.  There is at

least qualitative agreement between the calculated results and the experimental data.

1. Introduction

The confinement of the energetic fusion product alpha particles is an important issue for the

future D-T fusion reactors.  Unanticipated alpha particle loss would not only degrade the alpha heating

efficiency, but also might damage the first wall due to localized alpha particle energy loss.  In addition

to the usual first orbit loss, alpha particle diffusion is expected to be due to the periodic modulation of

the toroidal magnetic field (TF).  This Stochastic TF Ripple Diffusion (SRD) [1] is expected be much

larger than first-orbit loss for high-current tokamak reactors like ITER [2].  Since Goldston, White and

Boozer published their paper describing the first theoretical model for SRD [1], several detailed nu-

merical calculations [for example Refs. 2-5] and experiments [for example Refs. 6-8] have been done

to address this problem.
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 In order to test the GWB model with experiments, there should be a realistic numerical simu-

lation of alpha loss.  Recently, a set of alpha particle loss data has been acquired by the radially mov-

able outer midplane scintillator detector mounted in TFTR [9]. It has been experimentally found that

both the integrated alpha loss (per fusion reaction) and the pitch angle distribution of the alpha loss

signal vary significantly during a major-radial scan of the midplane detector, as was also observed for

D-D fusion product measurements using the same detector in TFTR [6,7].  For these radial scan experi-

ments, the local shadowing effect of outer limiters and probe itself appears to be important, since these

scans typical cover only a few centimeters around the geometrical “shadow” of the outer limiter edge.

The existing numerical codes have generally not included these geometric shadowing effects, even

though they can be important for determining the local alpha heat flux to the wall in the actual ma-

chines.

An earlier attempt to model these geometrical shadowing effects was done for the TFTR DD

midplane detector experiments on fusion product ripple loss [7].  Those calculations for the limiter

shadowing effect assumed a fixed particle diffusion rate, and compared the calculated radial fall-off

with DD fusion product loss measurements.  The best fit was obtained for a diffusion step size of 0.65

cm, which was close to the expected GWB step size of 0.75 cm.  However, the expected signals were

not calculated directly from the GWB model.  In order to more directly compare the measured alpha

loss signal with the GWB model, a new code, MCCSOR, was written to include these shadowing

effect, as described below.

2.  Geometry of the Detector and Limiters

The “midplane” lost alpha detector has a small aperture (≈0.1 cm x 0.2 cm) which can be

scanned horizontally in the major radius direction at a fixed poloidal angle of ≈20˚ below the outer

midplane, as illustrated in Fig. 1.  The normal scan range is within a few cm of the geometrical “shadow”

of the outer limiters, which are circular poloidal rings (Fig. 1a) located at various toroidal angles around

the vessel (these are sometimes referred to as RF limiters, since they were designed to protect the RF

antennas).  The limiter nearest to the detector is about 45º toroidally in the direction of the alphas

incident onto the detector (i.e. about 2 m toroidally) (Fig. 1b).  There are a total of 9 limiters around the
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vessel, with their inner edges defining a geometrical shadow with a major radius of R=260.6 cm and a

minor radius of 99 cm (aligned to an accuracy of about 0.3 cm).  Most of these limiters do not cover the

complete poloidal circumference of the TFTR vessel, e.g. often leaving a gap within ±30˚ around the

outer midplane.  The toroidally symmetric solid outer wall is at a radius of approximately 110 cm.

The detector probe itself is housed in a protective cylindrical shield with a diameter of 6.4 cm,

in which the aperture hole located 3 cm from its end [9].  Thus the aperture is always 3 cm behind the

geometrical shadow of the detector tip.  The detector cylinder occupies about 0.001 times the toroidal

circumference of the torus at the radius of the aperture; thus the shadowing effect of the detector is

small compared to the shadowing effect of the limiters, at least when the probe is within a few cm of the

limiter edge.

In the radial scans analyzed for this study, the plasma had dimensions of R=252 cm and a=87

cm, and the probe was scanned so that its aperture moved within rap = ±1.5 cm of the geometrical

shadow of the limiters (Rlim=260.6, alim=99 cm).  In this configuration the probe tip was at least 16

cm from the edge of the plasma itself.

3. Basic Model

The present model considers three distinct mechanisms by which an alpha particle can be col-

lected by the detector.  The simplest is first-orbit loss, in which an alpha born on a large trapped orbit

intersects a limiter on its first orbit [10].  The second is TF ripple loss, in which a confined trapped

alpha banana tip diffuses vertically under the influence of SRD [1].  The third is a mechanism specific

to this detector by which a normally confined alpha orbit can be detected if the aperture is located

radially inside  the geometrical shadow of the limiter.  The latter mechanism is not relevant for the other

alpha detectors in TFTR, which are located in the geometrical shadow of the limiter.

To strictly treat this problem a 3-D model should be used, but that would be intractable given

the large number of orbits followed by our Monte Carlo technique.   For the present study, we use a

reduced 2-D model to consider the limiter shadowing effect. This reduction is accomplished by assum-

ing that the toroidal angle of the particle’s bounce orbit is random as it crosses the outer midplane.  This

assumption has been examined by numerical calculation [7], and is also corroborated by the fact the
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toroidal procession frequency of alpha particle is much higher than its bounce frequency.  For the

standard case analyzed below, the probability for the particle to hit a limiter on each bounce, Plim, is

assumed be the fraction of the toroidal width of all the limiters with respect to the total circumference

at the outboard wall.  This ratio is estimated to be Plim=0.075 for the TFTR limiter configuration,

based on the fractional toroidal angle covered by the limiters near the outboard midplane, independent

of the details of the alpha particle orbits.  The validity of this assumption is discussed further in Sec. 6

With this assumption, the particle is launched from the detector and retraced backward in time.

This orbit retracing technique is similar to that used in [7], and we adopt this technique to save comput-

ing time for a given Monte Carlo statistical error.  The time step is chosen to be one bounce period.

During each bounce period, the guiding center orbit is determined by two constants of motion [5],

namely the magnetic momentum (µ) canonical toroidal momentum (Pφ):

ψ(R, Z) - RχV = Pφ (1a)

V2(1 - χ2) R/(R0B0) = µ (1b)

where χ = V|| / V ,  ψ = Ze Ψ / ( 2πm) , V is the particle velocity, Ψ = Ψ(R,Z) is the conventional

poloidal flux.  For this analysis, the magnetic flux surfaces are assumed to be concentric with a speci-

fied q(r)= q(0) [1+ (r/a)2]exp, where the parameters q(0)=1 and exp=2 are chosen to match the experi-

ment.

With Eq. 1, the guiding center orbit is determined in the R-Ψ representation, and then the orbit

is mapped into the conventional R-Z representation by Ψ = Ψ(R,Z). From Eq. 1, one can see that for a

given equilibrium configuration and a given velocity of the particle, the guiding center orbit of the

particle is only determined by its three initial values χi , Ri  and Zi.  Once the bounce orbit is deter-

mined, the contribution of this bounce period to the detected alpha particle signal fα (normalized to the

alpha source rate) is determined by integrating the alpha source along the orbit length elements “dl”

[9]:
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fα  =  ∫ Sαdl (2)

After the outer midplane crossing point of each bounce, if Rox > Rw the retracing is stopped;

here Rox is the major radius of the outer midplane crossing point of the orbit, and rw is the radius of the

wall at the outer midplane.  If Rw > Rox > Rolim the retracing is stopped with the probability of Plim,

where Rolim is the radius of the limiter at the outer midplane.

If the particle retracing procedure has not been stopped due to its hitting the first wall or the

limiter, the next bounce period is calculated.  For convenience of numerical calculation, although the

initial value of (Ri, Zi) for the first orbit is chosen to be the position of detector’s aperture, the initial

value of (Ri, Zi) for the next orbit is chosen to be the banana tip (Rtip, Ztip) of the preceding bounce

orbit.  At the start of the next bounce, collisional pitch angle scattering is applied to the particle.  To

model the pitch angle scattering effect, we randomly vary the χi according to

(∆θ)2 = ( π / 2)2ν⊥τb (3a)

χi=cos(π / 2 +∆θ) (3b)

where ν⊥ is the conventional 90° collision frequency, τb is the bounce period (see Table I).

If the TF ripple strength δ at the banana tip satisfies the GWB stochasticity criterion [1]:

δ > [ε / (Nqπ)]1.5 / (ρq’) (4a)

where N is the number of TF coils (20), ρ is the alpha gyroradius and q and q’ are calculated from the

assumed profile, then the standard SRD model is applied to randomly vary the vertical coordinates of

the banana tip according to:

∆Z = δρ[Nq /( ε sin ξ)]1.5 (4b)

where ξ is the poloidal angle of the banana tip [1].
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With these new initial values the subsequent bounce orbit is determined by Eq. 1 and its contri-

bution to the detector collection fraction is calculated by Eq. 2.  The Monte Carlo guiding center

bounce orbit retracing procedure continues until the particle hits on an obstacle ( the first wall, the RF

limiter or the detector itself), or the retracing time exceeds an assumed fraction of the alpha particle

slowing-down time.   For the standard modeling case below, this fraction was assumed to be 0.1, since

the measured alpha loss signal was within about 10% of the alpha birth energy. This procedure gives an

approximate calculation of the collisional SRD-induced loss.

4. Monte Carlo Technique

By the computation scheme described in Section 3, for each chosen initial condition about 5000

particles were launched from the detector into the plasma.  The resulting detector collection fraction

was obtained with reasonable small statistical error (<5%) induced by the Monte Carlo method.

In our computing scheme, there are two steps involving Monte Carlo method: randomly chang-

ing the particle’s magnetic moment by pitch angle scattering, and randomly determining if the particle

hits the limiter (through Plim).  In order to obtain better statistical accuracy for a given number of

sampling particles, a special weighting technique is employed.  For the first bounce period, the weight

of the particle is assigned to be 1.  For the subsequent bounce periods which satisfy Rw > Rox > ˙olim,

we reduce the weight of the particle by the factor  of (1 - Plim), instead of simply randomly stopping the

retracing procedure by the probability of Plim.  If the weight of the particle has been reduced to a given

critical value Wcr, we resume the random stopping scheme to avoid trivial further computation.  By

this technique, the Monte Carlo statistical error is greatly reduced.  With the same condition as calcu-

lated by the simple scheme mentioned above, this weighting technique reduces the number of particles

needed to launch from 5000 to 2000 (the corresponding CPU time is reduced about 20%, and at the

same time the statistic error is reduced from 5% to 3%.

5. Calculation Results and Comparison with Experiment

Calculations were done to compare this model with the D-T experimental results described in

Ref. 9, with plasma, machine, and alpha particle parameters shown in Table 1.  The code was used to
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calculate the expected pitch angle distributions for various assumed detector aperture locations with

respect to the outer limiter shadow.  The resulting calculated pitch angle (ÿϑ ) distributions are shown

in Figs. 2 for the “standard case” with the parameters of Table 1.  Note that these pitch angles (ϑ) are

measured with respect to the local total magnetic field.

The limiter shadowing effect can be seen in Fig. 2 in the variation of the pitch angle distribution

with respect to the assumed radial location of the detector aperture with respect to the edge of the

limiter.  When the aperture is well inside the limiter radius, e.g. rap = -1.5 cm, there is a large sharp

component at a pitch angle ϑ≈50˚ which is strongly diminished as the detector is moved outward, i.e.

toward rap = +2.5.  There is also a broader distribution between ϑ≈53-68˚ which diminishes as it

systematically shifts to higher pitch angles as the probe is moved outward.

The sensitivity of these results to various assumptions of the code are explored in Figs. 3-6.

Fig. 3 shows the effect of turning off the collisional SRD-induced transport (i.e. setting δ= 0).  The

sharp peaks at  ϑ≈50˚ remains, but the broad feature at ϑ≈53-68˚ disappears. Thus the broad feature at

ϑ≈53-68˚ is due to SRD; this is consistent with previous calculations using the MAPLOS code [6].

Fig. 3 also shows that the sharp peak at ϑ≈50˚ remains after collisional SRD is turned off.  This pitch

angle is near the fattest banana orbit at this detector location; i.e. just below this angle there are con-

fined passing alpha particles orbits.   Therefore the large increase inside rap=0 is due to the collection

of normally confined orbits, while the loss for rap >0 is due to first-orbit loss.  The first-orbit loss is

approximately independent of the radial position of the detector over this range, as expected.

Fig. 4 shows the results for the same parameters as Fig. 2, except that the detector self-shadow-

ing probability parameter was increased from its standard value of Pdet = 0.001 to Pdet = 0.005.  The

increased self-shadowing caused a decrease in the sharp feature at  ϑ≈50˚ due to an increase in the

probability that the normally confined alpha particle will hit the probe before it is collected by the small

aperture.

Fig. 5 shows the results for the same parameters as for Fig. 2, except that the orbits are followed

for a period of ftran=0.2 times the alpha energy e-folding time, instead of the ftran =0.1 assumed for the

standard case.  The increased integration time causes a factor of two increase in the level of the colli-

sional SRD feature at ϑ≈53-68˚.  Evidently there is a component of the collisional TF ripple loss which



8

continues on a time scale comparable to the alpha particle slowing-down time; this is consistent with

collisional guiding center calculations made using the ORBIT code [4].

Fig. 6 shows the results for the same parameters as Fig. 2, except that the RF limiter shadowing

probability parameter was increased from its standard value of Plim = 0.075 to Plim = 0.2.  The charac-

teristic of the pitch angle distribution of Fig. 6 is similar to Fig. 2, but there is a more rapid decrease of

the total loss signal as the detector is moved outward, due to the increased the probability of hitting the

limiter (see Sec. 6).

The experimental pitch angle (ϑExp) distributions for three aperture positions in this scan are

shown in Fig. 7, for the same discharges described in Ref. [9].  Note that these pitch angles (ϑExp) are

shown with respect to the total magnetic field (as are the calculated pitch angles).  As the detector is

moved inward past the outer limiter shadow, the pitch angle (ϑExp) distribution peaks toward a sharp

feature near ϑExp≈55˚, and as it moves outward into the limiter shadow, the pitch angle (ϑExp) distri-

bution broadens and peaks nearer ϑExp≈66˚. The behavior of the measured pitch angle distributions

are at least qualitatively similar to that predicted in the model calculations for the standard case in Fig.

2.

The total alpha particle loss (integrated over pitch angle) vs. aperture position is shown for both

the measurements and the model calculations in Fig. 8.  The measured alpha loss decreases by a factor

of 20 over the radial range ±1.7 cm around the edge of the limiter shadow; however, the calculated loss

based on the standard model (with Plim=0.075) decreases by only about a factor of 4.  For comparison,

the model calculations without limiters (Plim=0)  and with a larger probability for hitting the limiters

(Plim=0.2) are also shown in this figure; evidently the case with Plim=0.2 fits the data better.

6.  Discussion

 This model for the effect of the outer limiter shadowing on alpha detection near the outer

midplane agreed at least qualitatively with the experimental data from TFTR.   It correctly predicts the

change in the shape of the detected alpha pitch angle distribution as the detector is moved radially in

the range ±1.5 cm around the edge of the outer limiter shadow (comparing Fig. 2 with Fig. 7).  The

standard model also predicts a large decrease in total signal as the detector is moved behind the limiter
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shadow, although not as large a decrease as observed experimentally (Fig. 8).

The mean pitch angle of the calculated alpha loss increases when the detector aperture moves

outward due to the limiter shadowing effect.  One cause for this is the collection of otherwise confined

barely trapped orbits (with a small pitch angle ϑ≈50˚) when the aperture is moved more than about 1

cm inside the limiter shadow (rap < -1 cm).  The other cause for this change in the pitch angle distribu-

tion vs. aperture position is the increase in the SRD radial step size with increasing pitch angle, caused

by the increasing minor radius and ripple strength at the banana tip location.  The higher the SRD-

induced step size, the higher the probability for the particle to be detected far behind the limiter shadow.

Conversely, because the barely trapped particles are marginally stochastic, they have a low diffusion

rate and hence are quickly scraped off by the  limiter as the detector is moved outward.

To understand the variation of the total loss vs. detector position, a simple analytical model can

be used to evaluate the RF limiter shadowing effect. Assume that the alpha particle flux inside the RF

limiters is I0, and the aperture of the detector is located a distance “x” outside the RF limiters. The total

loss of alpha particle collected by the aperture is assumed to be proportional to the alpha particle flux at

x.  Assuming that at every bounce the particles (mainly trapped) walk randomly with a step-size of ∆b,

and that they will be scraped-off by the RF limiters with a probability of Plim, the total loss of alpha

particle collected by the detector at x is proportional to I(x)=I0(1-Plim)N , where N=x2/∆b2 is the

number of bounces needed for the particle to arrive at the aperture of the detector, as evaluated by a

random walk model. For the standard case mentioned above, the average step size induced by SRD is

about 0.5 cm, so about 9 bounces are needed for the alpha particle to randomly walk across the RF

limiter shadowing region from x=0 to the aperture at x=1.5 cm. Therefore the expected variation of the

total loss vs. detector position between x=0 and x=1.5 cm is about (1-0.075)9≈0.5, which agrees rea-

sonably well with the results from MCCSOR code.  From this simple analytical model, one can see that

the variation of the total alpha loss vs. the radial position of the detector is sensitive to the probability,

Plim.  Hence in order to obtain better comparison with the experiments, it is necessary to reexamine the

evaluation of the parameter, Plim.

As the end of this paper, we would like to make some general comments on evaluating the

shadowing probability, Plim, of the limiters. The estimate of Plim=0.075 used for the standard case
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was based on the simple geometrical fraction of the toroidal angle covered by limiters in TFTR (see

Sec. 3).  This was motivated by our 2-D model, which considered only the space-time evolution of the

banana tip position in the poloidal plane.  However, for the real 3-D bounce orbits, the evaluation of

Plim must also depend on the fraction of time the orbit spends in the limiter shadow, which in turn

depends on the shape of the orbit itself.  Thus the 3-D evaluation implies that Plim  is also a function of

the orbit shape, and not a simple geometrical constant.

Noting that φ=qξ, (here φ is the toroidal angle and ξ is the poloidal angle), if the poloidal angle

of the orbit behind the RF limiters shadow is assumed to be ∆ξ, toroidally there should be a part

∆φ=q∆ξ of the orbit falling into the shadowing region, implying a shadowing probability of Porb≈∆φ/

2π, roughly independent of the details of the limiter configuration.  If ∆ξ is large enough, the value of

Plim (evaluated in Section 3) should be replaced by Porb.  Typical orbits entering the TFTR midplane

probe aperture within the range rap=±1.5 cm have ∆ξ≈30°, implying that Porb>>Plim.  However, a

detailed calculation of Porb would also depend on the complicated of the outer limiter structure near

the midplane.  For comparison purposes, the effect of assuming Plim=0.2 on the radial profile to total

loss is shown in Fig. 8, and this assumption fits the experiments better than Plim=0.075.  Thus it is

likely that a 3-D model incorporating a self-consistent calculation of Plim will be necessary to improve

the fit to the experimental data.  At the same time, a more accurate equilibrium (including the Shafranov

shift), and the finite Larmor radius effect should also be included in future modeling.
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Table 1 - Model Parameters for Standard Case

Plasma:

R = 252 cm

a = 87 cm

I = 2.0 MA

B = 4.7 T.

 q(r)= q(0) [1+(r/a)2]2

n=3.3x1013 cm-3

Te=7 keV

Machine Geometry:
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rw = 110 cm (wall minor radius), centered at Rlim=260.6 cm

rlim = 99 cm (limiter minor radius), centered at Rlim=260.6 cm

Plim = 0.075

Pdet = 0.001

Alpha particle parameters:

E= 3.5 MeV

ρ = 5 cm  (at the magnetic axis)

bounce time τb = 2x10-5 sec

pitch angle scattering time  τ⊥ =8.3 sec

energy e-folding time  τα = 0.25 sec

fraction of orbit followed ftran = 0.1 τα

Figure Captions

Fig. 1 -  Schematic picture of the detector geometry and the RF limiter shadowing effect showing (a)

minor cross-section, and (b) midplane major cross-section.  The detector aperture moves in the range

±1.5 cm with respect to the geometrical shadow of the poloidal limiters.  Only a few of the 9 limiters

are shown; most of these expend only partially around the poloidal cross section, but all have a com-

mon limiter edge at Rlim=260.6 cm and alim=0.99 cm.

Fig. 2  -  Calculated pitch angle (ϑ) distribution of alpha loss signal for different positions of detector

aperture (standard case). The curves correspond to aperture position of -1.5 cm (top), -0.5 cm, +0.5 cm,

+1.5 cm and +2.5 cm (bottom), in that order.  The expected alpha loss signal decreases as the aperture

is moved behind the limiter shadow, while the mean pitch angle increases.
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Fig. 3  -  Effect of turning-off the stochastic TF ripple diffusion on the calculated pitch angle distribu-

tion of the alpha loss signal (comparing to the standard case).  Turning off SRD leaves the first-orbit

loss at rap>0, plus a contribution from normally confined non-diffusing orbits for rap < 0.  The curves

correspond to aperture position of -1.5 cm (top), -0.5 cm, +0.5 cm, +1.5 cm and +2.5 cm (bottom), in

that order.

Fig. 4  - Effect of increasing the detector self-shadowing probability Pdet=0.005 from Pdet=0.001 to

Pdet=0.005 on the calculated pitch angle distribution of the alpha loss signal for the standard case.  The

increased detector shadowing reduces the collection of normally confined orbits at rap < 0, but does not

significantly affect the collection of SRD-induced signal.  The curves correspond to aperture position

of -1.5 cm (top), -0.5 cm, +0.5 cm, +1.5 cm and +2.5 cm (bottom), in that order.

Fig. 5  -  Effect of increasing the orbit retracing time to from ftran=0.1 τα to ftran=0.2 τα on the

calculated pitch angle distribution of the alpha loss signal for the standard case.  The increased retrac-

ing time increases the magnitude of the SRD-induced signal with respect to the first-orbit and normally

confined orbit contributions.  The curves correspond to aperture position of -1.5 cm (top), -0.5 cm, +0.5

cm, +1.5 cm and +2.5 cm (bottom), in that order.

Fig. 6  Effect of increasing the RF limiter shadowing probability from Plim=0.075 to Plim=0.2 on the

calculated pitch angle distribution of the alpha loss signal for the standard case.  The increase of Plim

causes a more rapid decrease of the calculated alpha signal behind the limiter shadow (also shown in

Fig. 8).  The curves correspond to aperture position of -1.5 cm (top), -0.5 cm, +0.5 cm, +1.5 cm and

+2.5 cm (bottom), in that order.

Fig. 7  Measured pitch angle ϑExp distribution of alpha loss with respect to the total magnetic field at

the detector for three different aperture positions [9].  The mean pitch angle increases with increasing

rap, at least qualitatively consistent with the modeling in Figs. 2-6.  The vertical scale is the relative

alpha signal per DT neutron, but the horizontal scale is absolutely calibrated to within about ±3˚.
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Fig. 8 Comparison of the calculation results and the experiment data for the integrated alpha loss (per

neutron) vs. the radial position of the detector aperture.  The models are all normalized to the data at rap

= -1.5 cm, and assume various limiter hitting probabilities, with the best fit coming for Plim=0.2.  The

decrease vs. aperture position for Plim=0 is due to the detector self-shadowing.
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